
Advanced Models of Cellular Genetic Algorithms
Evaluated on SAT

Enrique Alba
Dept. of Languages and

Computer Science
University of Málaga, Spain

eat@lcc.uma.es

Hugo Alfonso
LISI, National University of

La Pampa
General Pico, Argentine

alfonsoh@ing.unlpam.edu.ar

Bernabé Dorronsoro
Dept. of Languages and

Computer Science
University of Málaga, Spain

dorronsoro@uma.es

ABSTRACT
Cellular genetic algorithms (cGAs) are mainly characterized
by their spatially decentralized population, in which indi-
viduals can only interact with their neighbors. In this work,
we study the behavior of a large number of different cGAs
when solving the well-known 3-SAT problem. These cellu-
lar algorithms differ in the policy of individuals update and
the population shape, since these two features affect the bal-
ance between exploration and exploitation of the algorithm.
We study in this work both synchronous and asynchronous
cGAs, having static and dynamically adaptive shapes for
the population. Our main conclusion is that the proposed
adaptive cGAs outperform other more traditional genetic
algorithms for a well known benchmark of 3-SAT.

Categories and Subject Descriptors
D.2.8 [Software Engineering]: Metrics—Performance mea-
sures; I.2.8 [Artificial Intelligence]: Problem Solving, Con-
trol Methods, and Search—Heuristic methods

General Terms
Algorithms; Performance

Keywords
Adaptation, cellular genetic algorithms, synchronicity

1. INTRODUCTION
Genetic Algorithms (GAs) work over a set (population) of

potential solutions (individuals) by applying on them some
stochastic operators in order to search for the best solutions.
Usually, most GAs use a single population (panmixia) of in-
dividuals and apply operators on them as a whole (see Fig-
ure 1). In contrast, there also exists some tradition in using
structured GAs (where the population is decentralized some-
how), especially in relation to their parallel implementation.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
GECCO’05, June 25–29, 2005, Washington, DC, USA.
Copyright 2005 ACM 1-59593-010-8/05/0006 ...$5.00.

Panmictic GA Cellular GA

Figure 1: Panmictic and cellular populations.

Cellular GAs are a subclass of GAs in which the popula-
tion is structured in a specified topology (usually a toroidal
mesh of dimensions d = 1, 2, or 3). In a cGA, the genetic
operations may only take place in a small neighborhood of
each individual (see Figure 1). The pursued effect is to im-
prove on the diversity and exploration capabilities of the
algorithm (due to the presence of overlapped small neigh-
borhoods) while still admitting an easy combination with
local search to improve on exploitation at the level of each
individual. Research in cGAs is a healthy field with recent
advances in theory [1, 10, 11] and new results reporting their
usefulness in maintaining diversity and promoting slow dif-
fusion of solutions through the population grid [15].

Cellular GAs usually assume a synchronous (or “paral-
lel”) update policy, in which all the individuals are formally
updated at the same time. However, this is not the only
option available. The alternative is called in the literature
an asynchronous (or “sequential”) update method, and lies
in placing the offsprings directly in the current population
by following some rules [11] instead of updating all the indi-
viduals simultaneously. As it can be seen in [11], the update
method has a marked effect on the behavior of the algorithm.
Furthermore, the shape of the structure in which individ-
uals evolve also has a deep impact in the performance of
the cGA [3]. In [1], an adaptive cGA that dynamically can
sharpen the exploration or the exploitation capabilities of
the canonical technique by changing the shape of the pop-
ulation is proposed. In [6], the reader can find an study
of the influence of some different asynchronous policies and
grid shapes on the problem solving capabilities of cGAs.

The motivations for this work are basically two. Firstly,
to check whether the results in [3] (non square grids are of-
ten more efficient than square ones) still hold for the 3-SAT
problem. Secondly, to study whether changing the grid

1123

shape during the evolution may be advantageous versus us-
ing an static one (as concluded in [1] for a large set of prob-
lems with synchronous cGAs) for an asynchronous updating
of the individuals. An algorithm with changing shapes will
dynamically select the most adequate grid shape during the
search by itself, depending on the diversity of the population.

The contribution of this work is to deep in the study of
the cGAs practice by merging two important trends in the
search for a good exploration/exploitation tradeoff such as
the synchronicity of the population updating [11], and the
utilization of dynamically adaptive population shapes [1].
For that, we propose and evaluate 19 distinct cGAs in this
paper, differing in the synchronicity of the population evo-
lution and/or the population shape, which can be static or
dynamically adaptive. In order to compare the behavior of
all these algorithms, we have selected the satisfiability prob-
lem (SAT), a hard combinatorial problem, well-known in the
literature, and having important practical applications.

This paper is organized as follows. In Section 2 we in-
troduce the studied algorithms, explaining the concept of
ratio and its effect on the behavior of the cGA. Section 3
briefly defines the SAT problem. Our results are summa-
rized in Section 4, and Section 5 addresses our conclusions
and future research activities.

2. CANONICAL AND ADVANCED CGAS
In this section we present the structure of a canonical

cGA, as well as some possible methods for updating the pop-
ulation. After that, we introduce the concept of ratio (Sec-
tion 2.1), and the importance of its value in the behavior
of the algorithm (Section 2.2). Finally, we present in Sec-
tion 2.3 the different policies we adopt for making the adap-
tive change in the shape of the dynamic populations.

In Algorithm 1 we show a pseudocode of a canonical cGA.
As it can be seen, a cGA starts with the cells (individuals) in
a random state and proceeds by successively updating them
using evolutionary operators, until a termination condition
is met. Updating a cell in a cGA means selecting two parents
in the individual’s neighborhood (including the individual
itself), applying the genetic operators to them, and finally
replacing the individual following a given replacement policy
in a new auxiliary population. After applying the reproduc-
tive cycle to all the individuals, the current population is
replaced by the auxiliary one for the next generation. Algo-
rithm 1 is a high-level description of the algorithm for a 2-D
grid of size HEIGHT×WIDTH and for formally simultaneous
update of all the cells.

Algorithm 1 Pseudocode of a synchronous cGA.

1: proc Steps Up(cga) //Algorithm parameters in ‘cga’
2: while not Stop Condition() do
3: for x ← 1 to WIDTH do
4: for y ← 1 to HEIGHT do
5: n list←Get Neighborhood(cga,position(x,y));
6: parents←Local Select(n list);
7: aux indiv←Recombination(cga.Pc,parents);
8: aux indiv←Mutation(cga.Pm,aux indiv);
9: Evaluate Fitness(aux indiv);
10: Insert If Better(position(x,y),aux indiv,cga,aux pop);
11: end for
12: end for
13: cga.pop←aux pop;
14: Update Statistics(cga);
15: end while
16: end proc Steps Up;

Cells can be updated synchronously or asynchronously.
In synchronous (parallel) update all the cells change their
states simultaneously, while in asynchronous, or sequential,
update cells are updated one at a time in some order. There
are many ways for sequentially updating the cells of a cGA
(an excellent discussion of asynchronous update in cellular
automata, which are essentially the same system as a cGA, is
available in [17]). We consider four methods of asynchronous
updating in this work:

• Fixed Line Sweep (LS): This is the simplest method.
It updates the n grid cells sequentially (1, 2, . . . , n) line
after line.

• Fixed Random Sweep (FRS): In this case, the next
cell to be updated is chosen with uniform probabil-
ity without replacement; this will produce a certain
update sequence (cj

1, c
k
2 , . . . , cm

n), where cp
q means that

cell number p is updated at time q and (j, k, . . . , m) is
a permutation of the n cells. The same permutation is
then used for all update cycles.

• New Random Sweep (NRS): Works like FRS, except
that a new random cell permutation is used for each
sweep through the array.

• Uniform Choice (UC): In this last method, the next
cell to be updated is chosen at random with uniform
probability and with replacement. This corresponds
to a binomial distribution for the update probability.

A time step (or generation) is defined as updating n times
sequentially, which corresponds to updating all the n cells in
the grid for LS, FRS, and NRS, and possibly less than n dif-
ferent cells in the UC method, since some cells might be upd-
ated more than once in a single time step. It should be noted
that, with the exception of LS, the other asynchronous upda-
ting policies are stochastic, representing an additional source
of non-determinism besides that of the genetic operators.

2.1 New cGA Variants Based on a Modified
Ratio

After explaining our basic algorithm and the asynchronous
variants in the previous section, we now proceed to char-
acterize the population grid itself. For this goal, we use
the “radius” definition given in [3], which accounts for non
square grids. The grid is considered to have a radius equal
to the dispersion of n∗ points in a circle centered in (x, y)
(Eq. 1). This definition always assigns different numerical
values to different grid shapes.

rad =

√ ∑
(xi − x)2 +

∑
(yi − y)2

n∗ , (1)

x =

∑n∗
i=1 xi

n∗ , y =

∑n∗
i=1 yi

n∗ .

The value given by Eq. 1 does not only characterize the
grid shape but it can also provide a radius value for the
neighborhood. The grid-to-neighborhood relationship can
be quantified by the ratio between their radii (Eq. 2) [15].

ratiocGA =
radNeighborhood

radTopology
. (2)

1124

After presenting this characterization of the radius and
topology by means of the ratio, we wonder about the im-
portance of such a measure. In fact, reducing the ratio
means reducing the global selection intensity on the pop-
ulation (see Section 2.2), thus promoting exploration. This
is expected to allow for a higher diversity in the genotype.
Conversely, the search performed inside each neighborhood
is guiding the exploitation of the algorithm. Changing the
ratio during the search is a unique feature of cGAs that
can be used to shift from exploration to exploitation at a
minimum complexity without introducing just another new
algorithm family in the literature.

2.2 Selection Pressure, Grid Shape, and Time
Selection pressure is related to the concept of takeover

time, which is the time it takes for a single best individual to
colonize the whole population with copies of itself using just
selection [12][14]. Shorter takeover times mean a stronger
selection.

In the field of cGAs, algorithms with a similar ratio show
a similar selection pressure [16]. In Figure 2 we plot such a
similar behavior for average executions of two cGAs with dif-
ferent neighborhood and population radii, but having two
similar ratio values. The cases plotted are those using a lin-
ear5 —L5— neighborhood with a 32 × 32 population, and
a compact21 —C21— neighborhood with a population of
64 × 64 individuals. As it is shown in Figure 2, the be-
havior of the two cGAs (having distinct neighborhood and
population shapes, but similar ratio value) is almost the
same. In [6] the authors show the effects of the ratio and the
asynchronous update policy on the explorative/exploitative
character of the search.

N. of Generations

B
e

s
t

In
d

iv
id

u
a

l
P

ro
p

o
rt

io
n

L5

C21

Figure 2: Selection pressure for two different cGAs
with similar ratio values. The graph represents the
proportion of best individuals in the population as
a function of time.

2.3 Adaptive Algorithms
In this section we focus on a still new proposed class of

cGA [1]. The core idea, like in most other adaptive algo-
rithms, is to use some feedback mechanism that monitors
the evolution and dynamically rewards or punishes param-
eters according to their impact on the solutions’ quality. A
main difference between our proposal and others in the liter-
ature is that both the monitoring feedback and the actions
undertaken are computationally inexpensive in our case. We
really believe that this is the capital feature of any adaptive
algorithm for being useful for other researchers, since the
literature contains many examples of interesting adaptive
algorithms whose feedback control or adaptive actions are

too expensive in some sense preventing somewhat their wide
adoption in research.

Algorithm 2 Pattern for adaptive criteria.

1: if C1 then
2: ChangeTo(square) //exploit
3: else if C2 then
4: ChangeTo(narrow) //explore
5: end if

Our adaptive mechanisms (see Algorithm 2) modify the
grid shape during the search as a function of the conver-
gence speed, trying to maintain the diversity and to pursuit
the global optimum during the run. For that, they increase
the local exploitation by changing to the next more square
grid shape whenever the algorithm evolves slowly, i.e., when
the convergence speed decays below a given ε ∈ [0, 1] value
(condition C1 of Algorithm 2). Conversely, if the search is
proceeding too fast, diversity could be lost quickly, thus ex-
isting a risk of getting stuck in a local optimum. In this sec-
ond case the population shape will be changed to a narrower
grid (C2 in Algorithm 2) promoting exploration and diver-
sity in the forthcoming generations. This algorithm, which
is executed every ti generations, is a general search pattern,
and multiple criteria could be used to control whether the
algorithm should explore or exploit the individuals for the
next ti generations.

Ratio

Square

Current ratio

C1C2

Narrow
ri ri+kri-2 ri-1 ri+2ri+1

ri-k.....

()rj+1j

Figure 3: Performing the change in the ratio with
our adaptive criteria.

Whenever the criterion C1 (or C2) is fulfilled, the adaptive
search pattern performs a change in the grid shape to the im-
mediately next more square (or narrow) allowed shape (func-
tion ChangeTo(square/narrow)). The bounding cases are
the square and the completely linear (ring-like) shapes, as
shown in Figure 3. When the change needed by the adaptive
criteria exceeds those limits, the current population shape
is maintained. Conversely, when the change is possible it is
accomplished by computing a new position for every indi-
vidual as shown in Figure 4. Of course, other changes could
have been used, but, in our quest for efficiency, the proposed
one is considered to introduce a negligible overhead.

(2,4) ([2·8+4] div 16,) = (1,4)[2·8+4] mod 16

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

0
1
2
3

(b)(a)

0 1 2 3 4 5 6 7
0
1
2
3
4
5
6
7

relocation

(i, j) ([i · n+j] div n ,’)[i · n+j] mod n’

Figure 4: Relocation of individuals when the popu-
lation changes from 8×8 to 4×16.

Once we have fixed the basic adaptive pattern and grid
shape modification rules, we now proceed to explain the cri-
teria used to determine when the population is going “too”

1125

fast or “too” slow. We propose in this paper three differ-
ent criteria for measuring the search speed. The measures
are based on the average fitness (criterion AF), the popu-
lation entropy (criterion PH), or a combination of both of
them (criterion AFPH). Since these criteria check simple
conditions over the average fitness and the population en-
tropy (calculated in every run in the population statistics
computation step), we can say that they are inexpensive to
measure, and they are indicative of the search states at the
same time too. The details on their internals are as follows:

• AF: This criterion is based on the average fitness
of the population. Hence, we measure the conver-
gence speed in terms of the diversity of performance.
We define ∆f t as the difference between the aver-
age fitness values in generation t and the previous
one: ∆f t = f t − f t−1. The algorithm changes the
ratio value to the immediately larger one (maintain-
ing the population size) if the difference ∆f t between
two contiguous generations (t and t − 1) decreases
at least in a factor of ε: ∆f t − ∆f t−1 < ε · ∆f t−1

(condition C1 of Algorithm 2). On the contrary,
the ratio will be changed to its closer smaller value
if that difference increases in a factor greater than
(1 − ε): ∆f t − ∆f t−1 > (1 − ε) · ∆f t−1 (condition
C2). Thus, we define C1 and C2 as:

C1 ::= ∆f t < (1 + ε) · ∆f t−1 ,

C2 ::= ∆f t > (2 − ε) · ∆f t−1 .

• PH: We now propose to measure the convergence
speed in terms of the genotypic diversity. The popu-
lation entropy is the descriptor used in this case. The
behavior of this criterion is similar to that of AF but it
uses the change in the population entropy between two
generations (∆Ht = Ht −Ht−1) instead of the average
fitness variation. Consequently, conditions C1 and C2

are expressed as:

C1 ::= ∆Ht < (1 + ε) · ∆Ht−1 ,

C2 ::= ∆Ht > (2 − ε) · ∆Ht−1 .

• AFPH: This is the last proposed criterion for the
adaptive algorithmic versions. It considers both the
population entropy plus the average fitness accelera-
tion by combining the two previous criteria (AF and
PH). Thus, it relays on the phenotype and geno-
type diversity in order to obtain the best explo-
ration/exploitation tradeoff. Condition C1 in this case
is the result of the logic and operation of conditions C1

of the two preceding criteria. In the same way, C2 will
be the and operation of conditions C2 of AF and PH:

C1 ::= (∆f t < (1 + ε) · ∆f t−1) and

(∆Ht < (1 + ε) · ∆Ht−1) ,

C2 ::= (∆f t > (2 − ε) · ∆f t−1) and

(∆Ht > (2 − ε) · ∆Ht−1) .

In short, we have proposed in this subsection three dif-
ferent adaptive criteria. The first one, AF, is based on the

performance diversity, while PH is based on genotypic di-
versity. Finally, AFPH is a combined criterion accounting
for diversity at these two levels.

3. SATISFIABILITY PROBLEMS
The satisfiability problem (SAT) has received much atten-

tion by the scientific community since any NP problem can
be translated into an equivalent SAT problem in polynomial
time (Cook theorem) [5]; while the inverse transformation
may not always exist in polynomial time. The SAT problem
was the first which was demonstrated to belong to the NP
class of problems.

The SAT problem consists in assigning values to a set
of n boolean variables �x = (x1, x2, . . . , xn) such that they
satisfy a given set of clauses c1(�x), c2(�x), . . . , cm(�x), where
ci(�x) is a disjunction of literals, and a literal is a variable
or its negation. Hence, we can define SAT as a function
f : Bn → B, B = {0, 1} like:

fSAT (x) = c1(x) ∧ c2(x) ∧ . . . ∧ cm(x) . (3)

An instance of SAT, �x, is called satisfiable if fSAT (�x) = 1,
and unsatisfiable otherwise. A k-SAT instance is composed
of clauses with length k, and when k ≥ 3 the problem is
NP-complete [9]. The fitness function we use is the stepwise
adaptation of weights (SAW) [7]:

fSAW (x) = w1 · c1(x) + . . . + wm · cm(x) . (4)

This function weights the values of the clauses with wi ∈
N in order to give more importance to those clauses which
are not satisfied yet by the current best solution. These
weights are adjusted dynamically according to wi = wi +
1 − ci(�z), being �z the current fittest individual.

4. RESULTS
In this section we analyze the results for all the proposed

cGAs over the 12 hard instances (from n = 30 to 100 vari-
ables) of the selected test-suite [4]. These instances belong
to the SAT phase transition of difficulty, where hardest in-
stances are located, since they verify that m = 4.3 ∗ n [13]
(being m the number of clauses).

In this paper we have studied three different synchronous
cGAs, which use static shapes for the population. These al-
gorithms are called Narrow, Rectang and Square, referring
to the shape of the population used. Additionally, we have
also studied 16 asynchronous cGAs. Four of them use a
square static population (LS, FRS, NRS, and UC), and the
other ones are the same algorithms but using the three pre-
sented adaptive criteria: AF (algorithms AF LS, AF FRS,
AF NRS, and AF UC), PH (algorithms PH LS, PH FRS,
PH NRS, and PH UC) and AFPH (algorithms AFPH LS,
AFPH FRS, AFPH NRS, and AFPH UC).

We compare the efficiency and the effectiveness of the al-
gorithms (details of the cGAs are given in Table 1). There-
fore we present our results in tables 2 to 6 in terms of the
Success Rate (SR) and the Average number of Evaluations
to Solution (AES) after 50 independent runs. Hence, SR
is the fraction of runs in which a solution was found, while
AES is the number of evaluations made in those successful
runs. It is clear that if SR = 0 then AES is not defined.

Analyzing the SR values of all the tables we can see that,
for the tested instances, none of the 19 studied cGAs is able
to find the optimum in every run. In particular, instances

1126

Table 1: Parameterization used in cGAs.
LS FRS NRS UC Square Rectang Narrow

Population Shape 12 × 12 8 × 18 4 × 36
(Ratio: 0.1832) (Ratio: 0.1576) (Ratio: 0.0856)

Population Size 144 Individuals
Selection of Parents Binary Tournament

Recombination DPX, pc = 1.0
Bit Mutation Bit-flit, pm = 1/n
Replacement Replace if Better

Stop Condition Find a solution or achieve 100.000 generations

Table 2: Results for the synchronous cGAs with different static grid shapes.
Inst. Narrow Rectang Square
n # SR AES SR AES SR AES

1 1.00 8243.2 1.00 7060.5 1.00 7781.8
30 2 1.00 825546.2 1.00 633774.1 1.00 664741.4

3 1.00 50941.4 1.00 58014.7 1.00 58757.8

4 1.00 19233.3 1.00 15585.3 1.00 12937.0
40 5 1.00 10449.9 1.00 10245.1 1.00 10765.4

6 0.76 2149524.2 0.76 2593805.5 0.68 1979966.1

7 1.00 15209.0 1.00 14863.4 1.00 13970.9
50 8 1.00 64773.1 1.00 58416.6 1.00 66726.7

9 0.96 873757.3 0.96 2065850.7 0.98 1657989.6

10 0.54 3850320.6 0.52 3669129.8 0.46 3459593.7
100 11 1.00 162104.3 1.00 155289.6 1.00 128505.6

12 1.00 334889.0 1.00 300922.9 1.00 264332.2

Table 3: Results for the asynchronous cGAs using a square grid shape.
Inst. LS FRS NRS UC
n # SR AES SR AES SR AES SR AES

1 1.00 7113.6 1.00 6359.0 1.00 6174.7 1.00 8032.3
30 2 1.00 575925.1 1.00 1259930.9 0.98 1039215.7 1.00 984182.4

3 1.00 42163.2 1.00 55774.1 1.00 57231.4 1.00 53642.9

4 1.00 16372.8 1.00 10595.5 1.00 11162.9 1.00 14443.2
40 5 1.00 10794.2 1.00 8657.3 1.00 9383.0 1.00 11295.4

6 0.72 2202740.0 0.74 2166332.1 0.74 1808885.2 0.70 2280305.8

7 1.00 12816.0 1.00 13766.4 1.00 13366.1 1.00 15194.9
50 8 1.00 53925.1 1.00 68207.0 1.00 49337.3 1.00 85060.8

9 0.96 1501134.0 1.00 1194707.5 1.00 1930878.7 1.00 1687541.8

10 0.64 2753109.0 0.50 3196460.2 0.54 3096293.3 0.56 3341808.0
100 11 1.00 88473.6 1.00 102954.2 1.00 135037.4 1.00 129772.8

12 1.00 222808.3 1.00 363876.5 1.00 262114.6 1.00 314110.1

6 and 10 can not be solved to optimality in all the runs by
anyone of the proposed cGAs. But the success rate is in gen-
eral very high in every algorithm, since the average value of
SR for all the instances is always higher than 92.66% for all
the algorithms. Moreover, the differences in the average SR
of the cGAs for all the instances is very small because they
all are between values 92.66% of Square and 94.83% of AF
LS and AF NRS. We must remember that our goal is not
to solve the problem to optimality, what it can be done for
example including a local search operator (e.g. WSAT [8])
in the algorithm. Instead, we head in our study in a com-
parative analysis of algorithms.

Let us now analyze the efficiency (measured in terms of
AES) of the studied cGAs. Among the synchronous pro-
posed algorithms, the most efficient one seems to be Square
(see Table 2), since it obtains the lowest values of AES in 6

out of the 12 tested instances. Rectang is also very efficient,
because it is the best of the three algorithms in 5 out of the
12 instances. In terms of the average value for AES in all
the instances, Square is also the best one, with differences of
just 0.47% in the case of Narrow and 15.76% with Rectang.
In contrast, Square is the algorithm with the lowest success
rate.

As to the static asynchronous algorithms (see Table 3),
we can see that LS has a lower computational cost (in terms
of the AES value) than the other cGAs in 6 out of the 12
studied instances. After computing the average value of AES
for all the instances, we see that LS obtains the best (small-
est) value too, with a difference of 11% with FRS and NRS,
and a 16% with respect to UC.

Tables 4, 5, and 6 summarize the results achieved for all
the dynamic adaptive cGAs studied. If we compare the al-

1127

Table 4: Results for the adaptive cGAs (based on the average fitness).
Inst. AF LS AF FRS AF NRS AF UC
n # SR AES SR AES SR AES SR AES

1 1.00 7807.7 1.00 9432.0 1.00 7021.4 1.00 8208.0
30 2 1.00 1083277.4 1.00 607086.7 0.98 689930.4 0.98 1145969.6

3 1.00 65085.1 1.00 50561.3 1.00 60215.0 1.00 75939.8

4 1.00 15431.0 1.00 15215.0 1.00 13219.2 1.00 14912.6
40 5 1.00 10422.7 1.00 9642.2 1.00 9406.1 1.00 10514.9

6 0.76 2845549.9 0.72 1932720.0 0.78 1899504.0 0.72 1684248.0

7 1.00 13020.5 1.00 14906.9 1.00 16490.9 1.00 13838.4
50 8 1.00 81121.0 1.00 80824.3 1.00 70272.0 1.00 79856.6

9 1.00 1235318.4 1.00 1012369.0 1.00 1620679.7 1.00 1318204.8

10 0.62 2701955.6 0.64 5134549.5 0.62 3653842.1 0.60 4064448.0
100 11 1.00 137065.0 1.00 134231.0 1.00 107089.9 1.00 124655.0

12 1.00 329385.6 1.00 312030.7 1.00 337331.5 1.00 400495.7

Table 5: Results for the adaptive cGAs (based on the population entropy).
Inst. PH LS PH FRS PH NRS PH UC
n # SR AES SR AES SR AES SR AES

1 1.00 6736.3 1.00 8046.7 1.00 8179.2 1.00 8769.6
30 2 1.00 579680.6 0.98 1359127.8 0.98 856085.9 0.98 1012599.2

3 1.00 65865.6 1.00 70447.7 1.00 55978.6 1.00 55713.6

4 1.00 13965.1 1.00 11946.2 1.00 16142.4 1.00 17426.9
40 5 1.00 10123.2 1.00 9452.2 1.00 10624.3 1.00 11877.1

6 0.84 1430502.9 0.76 2368523.4 0.74 1966362.8 0.76 1729242.9

7 1.00 11678.4 1.00 17487.4 1.00 15370.6 1.00 13475.5
50 8 1.00 64152.0 1.00 79260.5 1.00 58596.5 1.00 52989.1

9 1.00 1174190.4 0.96 1319100.0 0.98 1439991.2 0.96 1119216.0

10 0.46 2880651.1 0.60 3695520.0 0.58 4010136.8 0.46 1597855.3
100 11 1.00 109903.7 1.00 151067.5 1.00 109486.1 1.00 177621.1

12 1.00 345660.5 1.00 328564.8 1.00 363421.4 1.00 346294.1

Table 6: Results for the adaptive cGAs (based on the average fitness and the population entropy).
Inst. AFPH LS AFPH FRS AFPH NRS AFPH UC
n # SR AES SR AES SR AES SR AES

1 1.00 7597.4 1.00 7836.5 1.00 7701.1 1.00 8190.7
30 2 0.98 891239.5 1.00 994469.8 1.00 823760.6 1.00 667382.4

3 1.00 57081.6 1.00 53582.4 1.00 59616.0 1.00 51220.8

4 1.00 13720.3 1.00 14120.6 1.00 14112.0 1.00 14676.5
40 5 1.00 10195.2 1.00 11111.0 1.00 9878.4 1.00 10661.8

6 0.68 2503287.5 0.76 2383408.4 0.76 2293200.0 0.68 1847401.4

7 1.00 13291.2 1.00 13873.0 1.00 13671.4 1.00 15206.4
50 8 1.00 59495.0 1.00 70652.2 1.00 59261.8 1.00 64368.0

9 1.00 1275027.8 0.98 906215.5 0.98 1229081.1 1.00 1247382.7

10 0.58 2953301.0 0.58 3537757.2 0.56 2325558.9 0.48 2736672.0
100 11 1.00 154742.4 1.00 79300.8 1.00 131385.6 1.00 167281.9

12 1.00 458671.7 1.00 299335.7 1.00 342794.9 1.00 298022.4

gorithms in terms of the convergence speed (AES), we can
see that algorithms using AF (based on the average fitness)
have the best results in general, followed by the cGAs using
AFPH and PH.

Since the 19 algorithmic approaches are independent, a
statistic proof for k-independent samples is appropriate. Hence,
we have made an analysis of variance of nonparametric clas-
sification, because the assumption on the normality and the
homogeneity of the variances was impossible to verify. The

Kruskal-Wallis ANOVA by Ranks test was used for comput-
ing the p-values for each instance. Under the null hypothesis
(all samples come from populations with identical AES me-
dians) we observed that the mean computational cost is not
the same in all cases. Consequently this hypothesis was re-
jected. Moreover, the test values allowed us to distinguish
two different groups, the first one exceeds widely the signi-
fication value (α = 0.05) , and it is conformed by instances:
2, 3, 6, 8, 9, 10 and 12. Hence, the other group of instances

1128

Narrow

Rectang

Square

Figure 5: Typical evolution of the ratio (instance 9).

with statistically significant differences is composed by in-
stances: 1, 4, 5, 7 and 11.

In order to summarize the results of our 19 cGAs used
and get some useful conclusions, we present in Table 7 two
rankings with the algorithms ordered from best to worst.
These rankings have been made by summing up the position
that algorithms hold in a sorted list (from best to worst) for
each one of the 12 instances in terms of AES (when SR =
1.0) and SR (in the cases in which SR �= 1.0) respectively.

On the one hand, in the column SR = 1.0 of Table 7 we can
see that the asynchronous cGAs using static grids execute,
in general, a smaller number of fitness function evaluations
(better efficiency) than the other studied algorithms. The
exception is UC, since all the algorithms implementing the
UC update policy are located at the bottom of the rank.
Regarding the synchronous cGAs, we can see that the effi-
ciency becomes worse as the ratio gets smaller (rectangular
populations). It should be expected, since rectangular pop-
ulations promote exploration, delaying the convergence of
the algorithm.

On the other hand, in the column entitled SR �= 1.0 of
Table 7 it can be seen that the adaptive algorithms, and
particularly those using the AF adaptive criterion, obtain a
higher success rate (more effectiveness) than the other algo-
rithms used. Like in the case of the previously commented
ranking (when SR = 1.0), the worst algorithms are, in gen-
eral, those using the UC update policy. Finally, in contrast
to the ranking made when SR = 1.0, the synchronous algo-
rithms with rectangular populations are better suited than
the square one in this case.

The studied synchronous algorithms are located, in gen-
eral, close to or below the middle positions of the table in
the two rankings. This means that asynchronous algorithms
perform, in general, better than the synchronous ones both
in terms of efficiency and efficacy. Moreover, the asyn-
chronous cGAs implementing adaptive populations stand
out as the best ones in terms of efficacy (specially those
using the AF criterion), being also very well suited in terms
of efficiency (they are located at the middle of the rank).

In order to better understanding the behavior of our adap-
tive cGAs, we plot in Figure 5 the evolution of the ratio fluc-
tuation produced by AF LS, PH LS, and AFPH LS during a
typical execution for a selected instance of the benchmark.

All the algorithms in Figure 5 have a clear trend towards
promoting exploitation (square ratios over 0.18). The gen-
eral trend to evolve towards the square shape is an expected
scenario, because after an initial phase of exploration the
search focuses towards population exploitation. We can

Table 7: Ranking of the algorithms.
SR = 1.0 SR < 1.0

Rank Algorithm Sum of Rank Algorithm Sum of
Positions Positions

1 NRS 46 1 AF NRS 6
2 LS 49 1 AF LS 6
3 FRS 67 3 AFPH FRS 11
4 PH LS 68 4 AF FRS 14
5 Square 79 4 AFPH NRS 14
6 AFPH NRS 80 4 PH FRS 14
7 AF NRS 82 7 PH LS 18
7 AFPH FRS 82 8 LS 19
7 AFPH LS 82 8 PH NRS 19

10 Rectangular 83 8 AF UC 19
11 AF FRS 91 11 Narrow 20
12 PH NRS 92 12 Rectangular 22
13 PH FRS 95 13 NRS 23
14 AFPH UC 101 14 FRS 25
15 PH UC 105 15 UC 26
16 AF LS 109 15 PH UC 26
17 Narrow 112 17 AFPH LS 27
18 UC 114 18 AFPH UC 33
19 AF UC 116 19 Square 35

see in Figure 5 the existence of brief and periodic visits to
smaller ratios (below 0.13) with the goal of improving the
exploration of the algorithm. This automatic and alternate
shifting between exploitation and exploration in some prob-
lems is a noticeable feature of the self-guided mechanism
we propose, because it shows how the algorithm decides by
itself when to explore and when to exploit the population.
The implication on this and other problems of this feature
is quite important, as we state in [1].

5. CONCLUSIONS
We have studied in this work the behavior of 19 different

cellular genetic algorithms on a well-known benchmark for
the SAT problem. These algorithms use both synchronous
and asynchronous update policies. We use cellular algo-
rithms to this end because algorithms using decentralized
populations are often able to find the optimal solution of
complex instances for which other GAs (without a decen-
tralized population) can not find it [2].

We can conclude from this work that the static asyn-
chronous algorithms are more efficient (AES) than the other
ones, since NRS, LS, and FRS are the top three cGAs of
our ranking. Conversely, the asynchronous adaptive algo-
rithms (specially those using the AF criterion) are the most
effective (SR) for the tested benchmark, although we are
finding additional support for our conclusions in other in-
stances of the SAT problem. Hence, we can conclude that
the dynamic grid changes favor the exploration/exploitation
balance of the algorithm, helping it to avoid getting stuck
in local optima in many cases. In general, the tested asyn-
chronous cGAs perform better than the synchronous ones

1129

for the studied benchmark, since these synchronous algo-
rithms are located close to or below the middle positions in
the two rankings made.

An important advantage for the studied adaptive algo-
rithms is that it is not necessary to set the population shape
to any ad hoc value, because a dynamical recalculation of
which is the most appropriate one is performed during the
search. This also helps in reducing the overhead to a mini-
mum.

Regarding to the studied synchronous algorithms, we can
conclude that Square and Rectang are the most efficient
algorithms (with very similar results), while Square is the
worst of the three ones in terms of efficacy. This fact agrees
with the assumption that non-square grids are often more
efficient than square ones.

As a future work, it may be interesting to try some other
criteria for the adaptation of the shape of the population
in order to improve our results (e.g., a criterion based on
the standard deviation of the population), or to compare
the results with those of synchronous cGAs using the adap-
tive criteria. Another direct future extension of our work
is to add to our cGAs some optimization procedures (often
problem-dependent techniques) used in the literature for this
problem.

Acknowledgements
This work has been funded by MCYT and FEDER un-
der contract TIC2002-04498-C05-02 (the TRACER project)
http://tracer.lcc.uma.es.

6. REFERENCES
[1] E. Alba and B. Dorronsoro. The

exploration/exploitation tradeoff in dynamic cellular
evolutionary algorithms. IEEE Transactions on
Evolutionary Computation, 9(2):126–142, April 2005.

[2] E. Alba and M. Tomassini. Parallelism and
evolutionary algorithms. IEEE Transactions on
Evolutionary Computation, 6(5):443–462, October
2002.

[3] E. Alba and J. M. Troya. Cellular evolutionary
algorithms: Evaluating the influence of ratio. In
M. Schoenauer et al., editor, PPSN IV, volume 1917
of LNCS, pages 29–38. Springer-Verlag, 2000.

[4] T. Bäck, A. Eiben, and M. Vink. A superior
evolutionary algorithm for 3-SAT. In International
Conference on Evolutionary Programming, in coop.
with IEEE NN Council, volume 1477 of LNCS.
Springer-Verlag, 1998.

[5] S. Cook. The complexity of theorem-proving
procedures. In Proc. of the 3rd Anual ACM Symp. on
the Theory of Computing, pages 151–158, 1971.

[6] B. Dorronsoro, E. Alba, M. Giacobini, and
M. Tomassini. The influence of grid shape and
asynchronicity on cellular evolutionary algorithms. In
IEEE CEC04, pages 2152–2158, Portland, Oregon,
2004. IEEE Press.

[7] A. Eiben and J. van der Hauw. Solving 3-SAT with
adaptive genetic algorithms. In IEEE CEC97, pages
81–86. IEEE Press, 1997.

[8] G. Folino, C. Pizzuti, and G. Spezzano. Parallel
hybrid method for SAT that couples genetic
algorithms and local search. IEEE Transactions on
Evolutionary Computation, 5:323–334, Aug. 2001.

[9] M. Garey and D. Johnson. Computers and
Intractability: a Guide to the Theory of
NP-completeness. Freeman, San Francisco, CA, 1979.

[10] M. Giacobini, E. Alba, A. Tettamanzi, and
M. Tomassini. Modeling selection intensity for toroidal
cellular evolutionary algorithms. In K. Deb, editor,
GECCO04, volume 3102 of LNCS, pages 1138–1149,
Seattle, Washington, 2004. Springer Verlag, Berlin.

[11] M. Giacobini, E. Alba, and M. Tomassini. Selection
intensity in asynchronous cellular evolutionary
algorithms. In E. Cantú-Paz et al., editor, GECCO03,
pages 955–966. Springer Verlag, Berlin, 2003.

[12] D. Goldberg and K. Deb. A comparative analysis of
selection schemes used in genetic algorithms. In
G. J. E. Rawlins, editor, Foundations of Genetic
Algorithms, pages 69–93. Morgan Kaufmann, 1991.

[13] D. Mitchell, B. Selman, and H. Levesque. Hard and
easy distributions for SAT problems. In P. Rosenbloom
and P. Szolovits, editors, 10th National Conf. on AI,
pages 459–465, California, 1992. AAAI Press.

[14] G. Rudolph. On takeover times in spatially structured
populations: Array and ring. In K. K. Lai, O. Katai,
M. Gen, and B. Lin, editors, Proceedings of
theSecondAsia-Pacific Conference on Genetic
Algorithms and Applications(APGA ’00), pages
144–151, Hong Kong, PR China, 2000. Global-Link
Publishing Company.

[15] J. Sarma and K. D. Jong. An analysis of the effect of
the neighborhood size and shape on local selection
algorithms. In H. Voigt, W. Ebeling, I. Rechenberg,
and H. Schwefel, editors, PPSN IV, volume 1141 of
LNCS, pages 236–244. Springer, 1996.

[16] J. Sarma and K. D. Jong. An analysis of local
selection algorithms in a spatially structured
evolutionary algorithm. In T. Bäck, editor, ICGA97,
pages 181–186. Morgan Kaufmann, 1997.

[17] B. Schönfisch and A. de Roos. Synchronous and
asynchronous updating in cellular automata.
BioSystems, 51:123–143, 1999.

1130

